{"id":380,"date":"2024-03-23T06:45:34","date_gmt":"2024-03-23T06:45:34","guid":{"rendered":"http:\/\/devashree-shukla.local\/?p=380"},"modified":"2024-03-23T11:48:45","modified_gmt":"2024-03-23T11:48:45","slug":"380-2","status":"publish","type":"post","link":"http:\/\/devashree-shukla.local\/380-2\/","title":{"rendered":"Integrating Machine Learning into iOS Apps: A starter roadmap"},"content":{"rendered":"\n
MLModel<\/code> protocol.<\/li>\n\n\n\n- MLModelProvider<\/strong>: A protocol that defines methods for loading and updating models dynamically, useful for apps that need to update their models without being recompiled.<\/li>\n\n\n\n
- MLFeatureValue<\/strong>: Represents the data input and output of a model. Core ML supports several data types, including numbers, strings, images (as
CVPixelBuffer<\/code>), multiarrays, dictionaries, and sequences.<\/li>\n\n\n\n- MLDictionaryFeatureProvider<\/strong>: A convenient way to provide input to a model using a dictionary where keys are the input feature names of the model.<\/li>\n\n\n\n
- MLPredictionOptions<\/strong>: Options to configure model predictions, such as specifying the preferred Metal device for running the model.<\/li>\n\n\n\n
- Vision Framework Integration<\/strong>: For tasks that involve image processing before feeding into a Core ML model, the Vision framework can be used to prepare images. This is often necessary for tasks like object detection, image classification, and more.<\/li>\n<\/ul>\n\n\n\n
Project Idea: Image Classifier App<\/h3>\n\n\n\n
A simple yet intriguing project could be an Image Classifier iOS app. This app would use the camera to capture images in real time and classify them using a pre-trained Core ML model. For demonstration purposes, let’s use MobileNet, a lightweight model suitable for mobile applications, to classify objects into predefined categories.<\/p>\n\n\n\n
Step 1: Add MobileNet to Your Project<\/h4>\n\n\n\n
First, you need to add a Core ML model to your project. You can download the MobileNet model from Apple’s Core ML models page or use any other model that suits your interest.<\/p>\n\n\n\n
Step 2: Core ML Model Integration<\/h4>\n\n\n\n
Once the model is added to your project, Xcode automatically generates a class for the model. You can then use this class to make predictions.<\/p>\n\n\n\n
Organize your code into folders like Models<\/code>, ViewControllers<\/code>, Views<\/code>, and Helpers<\/code> for better readability.<\/p>\n\n\n\n<\/p>\n\n\n\n
\nimport UIKit\nimport Vision\nimport CoreML\n\nclass ImageClassifier {\n private var model: VNCoreMLModel?\n \n init() {\n do {\n let configuration = MLModelConfiguration()\n model = try VNCoreMLModel(for: MobileNet(configuration: configuration).model)\n } catch {\n print(\"Error setting up Core ML model: \\(error)\")\n }\n }\n \n func classify(image: UIImage, completion: @escaping (String) -> Void) {\n guard let model = model, let ciImage = CIImage(image: image) else {\n completion(\"Model or image not available\")\n return\n }\n \n let request = VNCoreMLRequest(model: model) { request, error in\n guard let results = request.results as? [VNClassificationObservation],\n let topResult = results.first else {\n completion(\"Failed to classify image.\")\n return\n }\n \n completion(\"Classification: \\(topResult.identifier), Confidence: \\(topResult.confidence)\")\n }\n \n let handler = VNImageRequestHandler(ciImage: ciImage)\n do {\n try handler.perform([request])\n } catch {\n print(\"Failed to perform classification.\\n\\(error.localizedDescription)\")\n }\n }\n}\n<\/pre>\n\n\n\nReferences <\/h3>\n\n\n\n\n- CoreML models: https:\/\/developer.apple.com\/machine-learning\/models\/#image<\/a><\/li>\n\n\n\n
- CoreML models: https:\/\/github.com\/likedan\/Awesome-CoreML-Models<\/a><\/li>\n\n\n\n
- Demo: https:\/\/github.com\/tucan9389\/awesome-ml-demos-with-ios<\/a><\/li>\n\n\n\n
- CreateML: https:\/\/developer.apple.com\/machine-learning\/create-ml\/<\/a><\/li>\n<\/ul>\n","protected":false},"excerpt":{"rendered":"
Core ML ARKit RealityKit Vision Framework Important Core ML APIs and Concepts Project Idea: Image Classifier App A simple yet intriguing project could be an Image Classifier iOS app. This app would use the camera to capture images in real time and classify them using a pre-trained Core ML model. For demonstration purposes, let’s use…<\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"om_disable_all_campaigns":false,"_monsterinsights_skip_tracking":false,"_monsterinsights_sitenote_active":false,"_monsterinsights_sitenote_note":"","_monsterinsights_sitenote_category":0,"footnotes":""},"categories":[24],"tags":[38,35,37,40,36,39,29],"acf":[],"aioseo_notices":[],"_links":{"self":[{"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/posts\/380"}],"collection":[{"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/comments?post=380"}],"version-history":[{"count":8,"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/posts\/380\/revisions"}],"predecessor-version":[{"id":414,"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/posts\/380\/revisions\/414"}],"wp:attachment":[{"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/media?parent=380"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/categories?post=380"},{"taxonomy":"post_tag","embeddable":true,"href":"http:\/\/devashree-shukla.local\/wp-json\/wp\/v2\/tags?post=380"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}